This article was downloaded by:

On: 27 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

A Simple, Preparative Procedure for N³-Anisoyluridine and O⁴-Diphenylcarbamoylguanosine 2'-O-(Tetrahydropyran-2-YL) Derivatives via The Corresponding 3',5'-Dibenzoates

Kazuo Kamaike^a; Yoshihiro Hasegawa^a; Yoshiharu Ishido^a

^a Department of Chemistry, Faculty of Science, Tokyo Institute of Technology, Tokyo, Japan

To cite this Article Kamaike, Kazuo , Hasegawa, Yoshihiro and Ishido, Yoshiharu(1988) 'A Simple, Preparative Procedure for N³-Anisoyluridine and O⁵-Diphenylcarbamoylguanosine 2'-O-(Tetrahydropyran-2-YL) Derivatives via The Corresponding 3',5'-Dibenzoates', Nucleosides, Nucleotides and Nucleic Acids, 7: 1, 37 - 43

To link to this Article: DOI: 10.1080/07328318808068701 URL: http://dx.doi.org/10.1080/07328318808068701

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A SIMPLE, PREPARATIVE PROCEDURE FOR

N³-ANISOYLURIDINE AND O⁵-DIPHENYLCARBAMOYLGUANOSINE
2'-O-(TETRAHYDROPYRAN-2-YL) DERIVATIVES
VIĀ THE CORRESPONDING 3',5'-DIBENZOATES¹

Kazuo Kamaike, Yoshihiro Hasegawa, and Yoshiharu Ishido*

Department of Chemistry, Faculty of Science,

Tokyo Institute of Technology,

O-okayama, Meguro-ku, Tokyo 152, Japan

Abstract: 3',5'-Di-O-benzoyl-2'-O-(tetrahydropyran-2-yl)uridine and 3',5'-di-O-benzoyl- \overline{N}^2 -isobutyryl-2'-O-(tetrahydropyran-2-yl)guanosine are converted into \overline{N}^3 -anisoyl-2'-O-(tetrahydropyran-2-yl)uridine (less and more polar diastereoisomers in 37% and 42% yields, respectively) and O^6 -diphenylcarbamoyl- N^2 -isobutyryl-2'-O-(tetrahydropyran-2-yl)-guanosine (less and more polar diastereoisomers in 15% and 59% yields, respectively), respectively, by N^3 -anisoylation and O^6 -diphenylcarbamoylation, followed by 3',5'-di-O-debenzoylation.

INTRODUCTION

The necessity to protect the portion of nucleic acid base moieties of quanosine and uridine involving active hydrogen during oligonucleotide synthesis has been noted by Reese et al.², and is caused by side reactions on those moieties inevitably induced in nucleotide coupling These problems have given an impetus for the development of a facile and useful technique for the protection of the nitrogen Studies on protecting groups for the N³-position of heterocycles. uridine and the 0^6 -position of guanosine have resulted in the development of anisoyl 3,4 and diphenylcarbamoyl groups, 5 etc. for this purpose. Typical intermediates employed in oligonucleotide syntheses are N^3 anisoyl-2'-0-(tetrahydropyran-2-yl)uridine 3,4 (5) and 0^{6} -diphenylcarba $moy1-N^2-isobutyry1-2'-0-(tetrahydropyran-2-y1)guanosine^5$ (6). Both 5 and 6 can be prepared by variety of methods, but the most effective way has been to use 1,3-dichloro-1,1,3,3-tetraisopropyldisoloxane for the temporary, simultaneous protection of the hydroxyl groups at the 3' and 5' positions. 3,4,5

COMPOUNDS

RESULTS AND DISCUSSION

Such aspects as described above led us to explore putting 5 and 6 to more practical use by the use of 3',5'-di-0-benzoyl-2'-0-(tetrahydro-pyran-2-yl)uridine (3) and 3',5'-di-0-benzoyl- \underline{N}^2 -isobutyryl-2'-0-(tetrahydropyran-2-yl)guanosine (4), which were respectively isolated as a glassy mixture of their diastereoisomers from each of the reaction mixtures of 2'-0-(tetrahydropyran-2-yl)ation of 3',5'-di-0-benzoyluridine (1) and 3',5'-di-0-benzoyl- \underline{N}^2 -isobutyrylguanosine (2).

Compound 3 was subjected to anisoylation with anisoyl chloride — $Et(iPr)_2N$, 4 followed by 3',5'-di-0-debenzoylation with 2 M NaOH solution in 1:2 pyridine — EtOH; both diastereoisomers of 5 were thus isolated in 37% (less polar) and 42% yields (more polar isomer). Compound 4 was subjected to 0^6 -diphenylcarbamoylation with diphenylcarbamoyl chloride — $Et(iPr)_2N$, 5 followed by the 3',5'-di-0-debenzoylation; both diastereoisomers of 6 were isolated in 15% (less polar) and 59% yields (more polar isomer).

The use of 1 and 2 for the preparation of 5 and 6 via 3 and 4, respectively, was concluded to be practically useful in the field of oligonucleotide synthesis.

EXPERIMENTAL

General methods. A melting point was determied by a Yanagimoto Micro-melting-point apparatus, and is uncorrected. T.l.c. was conducted on Merck silica gel F_{254} by developing with 9:1 chloroform — methanol system (Solvent A). Column chromatography was performed on silica gel (Wakogel C-300; purchased from Wako Pure Chemicals, Co. Ltd.) by the use of chloroform — methanol system. $^1\text{H-n.m.r.}$ spectra were recorded on a JEOL JNM FX 200 apparatus with tetramethylsilane (TMS) as the internal standard. Elemental analyses were achieved with a Perkin-Elmer 240-002 apparatus.

Isolation of 3 from the Mixture of (Tetrahydropyran-2-yl)ation of 1: A solution of 1 (2.7145 g, 6 mmol) in dried 1,4-dioxane (15 mL) was treated with 2,3-dihydropyran (4.1 mL, 45 mmol) and $TsOH \cdot H_2O$ (0.2853 g, 1.5 mmol) at room temperature. After stirring for 30 min, the resulting mixture was neutralized with 5% aqueous sodium bicarbonate solution, extracted with chloroform (40 mL) and washed with water (20 mL x 2).

Conversion of 3 into 5: Compound 3 (2.9295 g, 5.46 mmol) was treated with anisoyl chloride (2.7945 g, 16.38 mmol) in the presence of Et(iPr)₂N (2,85 mL, 16.38 mmol) in pyridine (27 mL) for 30 min at room temperature with stirring. After quenching the resulting mixture with water (5 mL) at room temperature with stirring for 30 min, the mixture was extracted with CHCl₃ (100 mL) and the extract was washed successively with 5% aqueous $NaHCO_3$ solution (50 mL x 2) and water (50 mL). organic solution was evaporated and the residue was dissolved in 1:2 pyridine - ethanol (60 mL); the solution was treated with 2 M aqueous NaOH solution (6 mL) for 10 min at the temperature in an ice-NaCl bath. The resulting solution was neutralized with Dowex 50W (pyridinium form) resin and the resin was filtered off. The resind was washed with 1:2 pyridine - ethanol (100 mL), and the filtrate and the washing were combined and evaporated. The residue was subjected to the chromatography on the column with chloroform — methanol system to give the less polar [0.9444 g, 37% yield; R_{F} 0.40 (Solvent A)] and more polar diastereoisomers [1.0611 g, 42% yield; $R_{\rm F}$ 0.30 (Solvent A)] of 5. The former was crystallized from ethanol (0.7323 g, 29% yield).

The less polar isomer had m.p. $169-171^{\circ}\text{C}$, $^{1}\text{H-n.m.r.}$ (CDCl $_{3}-\text{TMS}$): δ 1.44 - 1.90 (6H, m, C-CH $_{2}$ -C x 3), 3.14 - 3.38 (2H, m, O-CH $_{2}$ -C), 3.68 - 4.00 (2H, m, H-5' and 5"), 3.84 (3H, s, OCH $_{3}$), 4.04 - 4.10 (1H, m, H-4'), 4.24 (1H, t, J $_{2'}$, 3', 5.25 Hz, H-3'), 4.34 - 4.40 (1H, m, H-2'), 4.61 - 4.67 (1H, m, O-CH $_{2}$ -O), 5.76 - 5.79 (1H, m, H-1'), 5.77 (1H, d, J $_{5,6}$ 8.3 Hz, H-5), 6.92 (2H, d, J 8.79 Hz, Ph proton x 2), 7.85 (2H, d, J 8.79 Hz, Ph proton x 2), and 7.93 - 8.04 (1H, m, H-6).

Anal. Calcd for $C_{22}H_{26}N_2O_9$: C, 57.14; H, 5.67; N, 6.06. Found: C, 57.02; H, 5.67; N, 6.09.

The more polar isomer was a glass, 1 H-n.m.r. (CDCl $_3$ - TMS): $_{\delta}$ 1.27 - 2.08 (6H, m, C-CH $_2$ -C x 3), 2.88 - 3.01 and 3.12 - 3.28 (2H, m, H0-3' and 5'), 4.42 - 4.56 (2H, m, 0-CH $_2$ -C), 4.68 - 4.92 (2H, m, H-5" and 5"), 3.88 (3H, s, 0CH $_3$), 4.08 - 4.13 (1H, m, H-4'), 4.30 - 4.36 (1H, m, H-4'), 4.30 - 4.36 (1H, m, H-3'), 4.55 (1H, t, H-2'), 4.72 (1H, br. s, 0-CH $_3$ -0), 5.82 (1H, d, J $_5$, 8.06 Hz, H-5), 5.85 (1H, d, J $_1$ ', 2' 5.1 Hz, H-1'), 6.96 (2H, d, J 9 Hz, Ph proton x 2), 7.70 (1H, d, H-6), and 7.90 (2H, d, J 9 Hz, Ph proton x 2).

<u>Anal</u>. Calcd for $C_{22}H_{26}N_2O_6$: C, 57.14; H, 5.67; N, 6.06. Found: C, 57.39; H, 5.80; N, 6.16.

Isolation of 4 from the Mixture of (Tetrahydropyran-2-y1)ation of 2: The mixture obtained by treating 2 (2.5270 gm 4.5 mmol) with 2,3-dihydropyran (3.33 mL, 33.75 mmol) in the presence of TsOH·H₂O (0.8560 g, 4.5 mmol) in 1,4-dioxane (11.25 mL) was worked up as described above and was subjected to the chromatography with chloroform — methanol system to give a glassy mixture of the diastereoisomers of 4 (2.5723 g, 90% yield), R_F 0.58 (Solvent A), 1 H-n.m.r. (CDCl₃ — TMS): δ 1.19 — 2.49 (6H, m, C-CH₂-C x 3), 1.277, 1.284, 1.31, and 1.32 [6H, s x 4, C(CH₃)₂], 2.68 — 2.84 (1H, m, CHMe₂), 3.10 — 3.22 (2H, m, O-CH₂-C), 4.62 — 4.92 (4H, m, H-4', 5', 5", and O-CH-O), 5.20 (1H, t, H-2'), 5.87 — 5.97 (1H, m, H-3'), 6.00 — 6.03 (1H, d x 2, J_{1',2'} 5.86 Hz, H-1'), 7.23 — 8.13 (10H, m, Ph proton x 10), 9.54 and 9.60 (1H, br. s x 2, N²H), 12.06 and 12.09 (1H, br. s x 2, H-1).

Conversion of 4 into 6: Compound 4 (2.5723 g, 4.05 mmol) was treated with diphenylcarbamoyl chloride (1.8766 g, 8.10 mmol) in the presence of $\mathrm{Et(iPr)}_2\mathrm{N}$ (1.06 mL, 6.08 mmol) in pyridine (20.25 mL) with stirring for 2 h at room temperature. The resulting mixture was quenched with water (5 mL) and stirred for 30 min. The mixture was extracted with chloroform (100 mL), and the organic layer was successively washed with 5% aqueous NaHCO_3 solution (50 mL x 2) and water (50 mL). The organic solution was evaporated and the residue was further used for the subsequent 3',5'-di-0-debenzoylation without purification. The residue obtained above was dissolved in 1:2 pyridine — EtOH (8 mL), and treated with 2 M aqueous NaOH solution (5.4 mL) at 0°C for 15 min with stirring. The mixture was neutralized with Dowex 50W (pyridinium form), and the resin was filtered off. The resin was

washed with 1:2 pyridine — water (50 mL). The filtrate and the washing were combined and evaporated; the residue was subjected to the chromatography with chloroform — methanol system to give the less polar [0.3952 g, 15% yield; $R_{\rm F}$ 0.39 (Solvent A)] and the more polar diastereoisomers [1.5153 g, 59% yield; $R_{\rm F}$ 0.34 (Solvent A)] of 6.

The less polar isomer was a glass, 1 H-n.m.r. (CDCl $_{3}$ - TMS): $_{6}$ 1.24 - 1.27 [6H, s x 2, C(C $_{13}$) $_{2}$], 1.37 - 2.21 (6H, m, C-C $_{12}$ -C x 3), 2.67 - 2.81 (1H, m, C $_{14}$ Me $_{2}$), 3.45 - 3.52 and 3.58 - 3.81 (3H, m x 2, 0-C $_{12}$ -C and H0-3'), 3.96 - 4.03 (2H, m, H-5' and 5"), 4.31 (1H, br. s, 0-C $_{12}$ -C and H0-3'), 4.40 - 4.43 (1H, m, H-3'), 4.54 - 4.57 (1H, m, H-3'), 4.84 (1H, dd, J $_{2'}$, 3' 4.88 Hz, H-2'), 4.86 - 4.94 (1H, m, H0-5'), 5.91 (1H, d, J $_{1'}$, 2' 7.32 Hz, H-1'), 7.22 - 7.46 (10H, m, Ph proton x 10), 8.02 (1H, s, H-8), and 8.18 (1H, br. s, N $_{14}$ H).

Anal. Calcd for $C_{32}H_{36}N_6O_8\cdot 2H_2O$: C, 57.53; H, 6.03; N, 12.57. Found: C, 57.77; H, 5.74; N, 12.31.

The more polar isomer was a glass, $^1\text{H-n.m.r.}$ (CDCl $_3$ - TMS): $_{\delta}$ 1.23 and 1.27 [6H, s x 2, C(CH $_3$) $_2$], 1.38 - 2.13 (6H, m, C-CH $_2$ -C x 3), 2.66 - 2.80 (1H, m, CHMe $_2$), 2.97 - 3.08 and 3.33 - 3.41 (3H, m x 2, 0-CH $_2$ -C and H0-3'), 3.76 - 4.02 (2H, m, H-5' and 5"), 4.18 - 4.23 (1H, m, H-4'), 4.47 - 4.58 (2H, m, 0-CH $_2$ -O and H0-5'), 4.72 - 4.77 (1H, m, H-3'), 4.96 (1H, t, H-2'), 5.99 (1H, d, J $_1$ ', 2' 6.65 Hz, H-1'), 7.21 - 7.45 (10H, m, Ph proton x 10), 8.01 (1H, s, H-8), and 8.25 (1H, br. s, N $_2$ H).

Anal. Calcd for $C_{32}H_{36}N_60_8\cdot H_20$: C, 59.07; H, 5.89; N, 12.92. Found: C, 58.77; H, 5.65; N, 12.93.

ACKNOWLEGEMENT

The authors thank Mrs. N. Hasegawa, Department of Chemistry, Faculty of Science, Tokyo Institute of Technology, for the elemental analyses, and one of them (Y. I.) the Ministry of Education, Japanese Government, for the Scientific Research Grant-in-aids (No. 5943006 and 61111004).

REFERENCES

Partial Protection of Carbohydrate Derivatives. Part 25. For Part 24, see K. Kamaike, S. Yamakage, and Y. Ishido, <u>Nucleosides & Nucleotides</u>, in press. Downloaded At: 09:18 27 January 2011

- P. K. Bridson, W. Markiewicz, and C. B. Collins, <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, 447 (1977); <u>idem.</u>, <u>ibid.</u>, 791 (1977); C. B. Reese and A. Ubasawa, <u>Nucleic Acids Res.</u>, <u>Symp. Ser.</u>, No. 7, 5 (1980); idem., Tetrahedron Lett., 21, 2265 (1980).
- 3 C. Welch and J. Chattopadhyaya, Acta Chem. Scand., B37, 147 (1983).
- 4 T. Kamimura, T. Maseki, K. Urakami, S. Honda, M. Sekine, and T. Hata, <u>Chem. Lett.</u>, 1051 (1983); M. Sekine, S. Nishiyama, T. Kamimura, Y. Osaki, and T. Hata, Bull. Chem. Soc. Jpn., 58, 850 (1985).
- 5 T. Kamimura, M. Tsuchiya, K. Urakami, K. Koura, M. Sekine, K. Shino zaki, K. Miura, and T. Hata, J. Am. Chem. Soc., 106, 4552 (1984).
- 6 K. Kamaike, F. Uemura, S. Yamakage, S. Nishino, and Y. Ishido, Nucleosides & Nucleotides, in press.

Received January 14, 1987.